
Add: HeBei ShengShi HongBang Cellulose Technology CO.,LTD.


CONTACT US
+86 13180486930
In the world of modern construction, synthetic fibers have revolutionized the way materials are used, enhancing the strength, flexibility, and durability of various building components. The different types of synthetic fibers available today are engineered for specific uses, making them indispensable in many construction projects. These fibers are often used to reinforce concrete, improve the resilience of building structures, and provide additional benefits like increased fire resistance and weather protection. From polypropylene fibers to long glass fibers , synthetic fibers offer a range of options tailored to different needs. Whether it’s increasing the strength of cement or providing insulation properties, the different types of synthetic fibers ensure that construction projects meet high standards of quality and longevity. In addition to their superior performance, synthetic fibers are often more cost-effective and readily available than traditional materials. This makes them a preferred choice for construction companies aiming to reduce costs while maintaining high-quality results. Furthermore, the environmental impact of synthetic fibers is increasingly being addressed with sustainable production methods, making them a more eco-friendly option for the construction industry. Long Glass Fiber Polypropylene: A Key Ingredient for Stronger Materials One of the standout synthetic fibers in the construction industry is long glass fiber polypropylene . This innovative fiber combines the strength of glass with the lightweight, corrosion-resistant properties of polypropylene. As a result, long glass fiber polypropylene is often used to reinforce concrete and other building materials, providing a significant boost in durability and performance. The inclusion of long glass fiber polypropylene in construction materials helps reduce cracking and improve the structural integrity of buildings and roads. The long fibers create a matrix that distributes stresses evenly across the material, preventing localized damage. This fiber is particularly useful in high-strength concrete applications where additional reinforcement is needed. Moreover, long glass fiber polypropylene is highly resistant to environmental factors like moisture, UV radiation, and temperature changes, making it ideal for both indoor and outdoor construction projects. It is commonly used in applications like paving, drainage systems, and even in the production of prefabricated building components. Its versatility and effectiveness in improving the lifespan and reliability of building materials make it a go-to solution for modern construction needs. Fibre Natural and Synthetic: A Comparison of Strength and Sustainability When choosing materials for construction, understanding the difference between fibre natural and synthetic options is crucial. While natural fibers such as jute, hemp, and cotton have been traditionally used in construction, synthetic fibers like polypropylene, polyester, and nylon have emerged as more durable and cost-effective alternatives. Fibre natural and synthetic materials each have their own advantages, making them suitable for different types of applications. Natural fibers are renewable, biodegradable, and often produced using more sustainable methods, making them a more eco-friendly option. However, they may not offer the same level of strength or resistance to environmental factors as synthetic fibers. On the other hand, synthetic fibers are engineered for durability, offering superior resistance to moisture, heat, and wear. They are often used to enhance the properties of natural materials, making them more suitable for demanding construction environments. For example, natural fibers like hemp may be used in insulation or as a reinforcement material in low-stress applications, while synthetic fibers like polypropylene or polyester are used for high-strength reinforcement in concrete, roofing, and other critical structures. By combining the best of both fibre natural and synthetic materials, construction companies can achieve optimal performance and sustainability. Non-Woven Polypropylene Fiber: A Revolutionary Material in Construction Non woven polypropylene fiber is another essential material that is increasingly being used in the construction industry. Unlike traditional woven fabrics, non woven polypropylene fiber is made from a process that bonds fibers together without weaving or knitting, resulting in a highly versatile material with excellent durability and moisture resistance. This fiber is widely used in applications like drainage systems, geotextiles, and road construction. Non woven polypropylene fiber provides a lightweight yet strong solution for reinforcing construction materials. It is often used in soil stabilization, as it helps prevent erosion and improves the strength of the ground underneath roads, bridges, and buildings. The material's ability to resist moisture also makes it ideal for protecting against corrosion and extending the lifespan of infrastructure. Additionally, non woven polypropylene fiber is environmentally friendly, as it is made from recyclable polypropylene, a material that can be repurposed for various other uses. Its cost-effectiveness, combined with its high-performance qualities, makes it a popular choice for contractors seeking durable and sustainable solutions for their construction projects. S ynthetic F ibers FAQs What are the different types of synthetic fibers used in construction? Synthetic fibers used in construction include polypropylene, polyester, nylon, and glass fibers. Each type is engineered for specific applications, such as reinforcing concrete, improving durability, and providing insulation. What is long glass fiber polypropylene, and why is it important in construction? Long glass fiber polypropylene is a fiber that combines the strength of glass with the lightweight, corrosion-resistant properties of polypropylene. It is essential in construction for reinforcing concrete, improving structural integrity, and preventing cracking. What are the benefits of using natural fibers in construction? Natural fibers , like hemp or jute, offer benefits such as renewability, biodegradability, and sustainability. They are commonly used for insulation and low-stress reinforcement, but may not be as durable or resistant to environmental factors as synthetic fibers. How does non-woven polypropylene fiber differ from woven fabrics? Unlike woven fabrics, non-woven polypropylene fiber is made through a bonding process that does not involve weaving or knitting. This results in a highly durable and moisture-resistant material, commonly used in geotextiles, drainage systems, and soil stabilization. Are synthetic fibers environmentally friendly? While synthetic fibers are often made from petroleum-based products, many are now produced using more sustainable methods. Additionally, materials like non woven polypropylene fiber are recyclable, making them a more environmentally friendly choice in construction. As construction needs evolve, synthetic fibers like long glass fiber polypropylene and non woven polypropylene fiber continue to play a crucial role in enhancing the strength, durability, and sustainability of building materials. If you're in the construction business, investing in these cutting-edge fibers will improve the performance of your projects and contribute to more eco-friendly practices. Visit our website today to explore our wide range of high-quality synthetic fibers and learn how they can transform your construction projects!

Production

Experience

Acreage
Starch ether has rapidly become a vital additive in dry mortar technologies, especially for tile adhesive, skim coat, and self-leveling compounds. Driven by advancements in polymer chemistry and growing demand for optimized mortar properties, starch ether for dry mortar is transforming construction material solutions. Explore Starch Ether Product Details Industry Trends & Market Overview for Starch Ether Global starch ether market size reached USD 436.7 million in 2023, projected at a CAGR of 5.8% through 2029 (Source: IMARC Group). Construction sector accounts for over 68% of starch ether applications, predominantly in dry mortar and tile adhesive formulations. Asia-Pacific remains the largest consumption market, led by China and India. Rising demand for water retention, workability, anti-sagging effect, and cost optimization in modern construction fuels adoption. Technical Parameters of Starch Ether for Dry Mortar Parameter Specification Range Typical Value Testing Standard Appearance White Powder Pure White, Free-flowing Visual/ISO 8213 pH (2% Solution) 6.0 – 8.0 7.2 ISO 976 Moisture Content (%) <10.0 6.5 ISO 585 Viscosity (mPa.s, 2% sol) 300 – 1800 1200 Brookfield RV Bulk Density (g/L) 350 – 500 410 ISO 787-11 Particle Size (Mesh) 99% ≤ 120μm ≤ 120μm ISO 565 Solubility Instantaneous Very Good In-house Certification ISO 9001:2015 Certified – Manufacturing Process of Starch Ether Starch Selection ↓ High-purity food/industrial starch sourced Alkalization & Etherification ↓ Reacts with etherifying agents (e.g., monochloroacetic acid) under controlled pH & temperature Neutralization & Filtration ↓ Impurity removal, product stabilization (ISO 9001 compliance) Drying & Sieving ↓ Spray-dried & sieved to required mesh (≤120μm) Packing & QC Testing ↓ Packaged, quality checks (Brookfield Viscosity, Moisture test, ISO 8213) Standards Aluminiated: ISO 9001:2015, ANSI, ASTM C270 View Complete Starch Ether Product Workflow Starch Ether Product Grades – Specification Comparison Grade Recommended Application Main Feature Bulk Density (g/L) Viscosity (mPa.s) Water Retention (%) pH SSH SE-25 Tile Adhesive Anti-sagging, Strong Viscosity 410 1200 95.5 7.2 SSH SE-30 Self Levelling & Skim Coat Good Flow & Smooth Finish 400 1400 97 7.1 General Brand D Plaster Mortar High Workability 415 1100 94 7.0 Leading Brand E Tile Grout Easy Mixing 390 1000 94.7 6.9 Key Technical Advantages of Starch Ether Improved Workability : Enhances open time, slip resistance, and trowelability in dry mortars. Optimal Water Retention : Maintains sufficient moisture for cement hydration and curing, reduces premature drying/cracking. Rheology Modification : Controls viscosity and sag resistance, particularly in tile adhesive and gypsum-based systems. Compatibility : Blends smoothly with cellulose ethers, redispersible powders, and various aggregate systems. Cost-effective : Low dosage (0.03–0.10%) with high efficiency reduces overall formulation cost compared to synthetic polymers. Eco-friendly : Derived from renewable starch, non-toxic, biodegradable, meets latest environmental requirements (eg. EU Reach & FDA clauses for indirect food contact). Case: Starch Ether in Tile Adhesive Challenge: Modern large-format tiles require high slip resistance and open time in adhesives. Solution: Starch ether in tile adhesive enhances anti-slip (reduction of “slip” by ~65% vs standard mix) and improves water retention by 10%, verified by EN 12004 standard tests. Result: 18% reduction in callback rates for “slip” complaints, improved installer satisfaction. Learn more technical details Price Trends & Manufacturer Comparison Manufacturer Country Known Brand/Product Spec. Range Starch Ether Price (USD/MT) Certifications SSH Chemical China SSH SE-25 / SE-30 1200–1400 mPa.s 1350–1650 ISO 9001:2015, SGS AmyloChem GmbH Germany AmyloAdd 900–1300 mPa.s 1700–2100 ISO 9001 ChemStarch Turkey STARCHEA 1000–1600 mPa.s 1400–1800 ISO 9001 SinoSR China SR-Ether 1100–1500 mPa.s 1400–1690 ISO, SGS India Polymers India IndiStar 950–1450 mPa.s 1330–1800 ISO 9001 Note: Starch ether price is influenced by viscosity, purity, mesh, certification level and purchasing volume. For customized quotes, contact SSH Chemical . Customized Formulation & Supply Solutions Free technical evaluation on starch ether uses for diverse mortar systems: tile adhesive, self-levelling, plaster, EIFS, gypsum , etc. Custom viscosity, mesh, anti-sag, or application performance tailored to unique project requirements. Comprehensive quality assurance—100% batch testing (viscosity, pH, moisture), in compliance with ISO 9001:2015 and client-specific QA protocols. Supply chain traceability and on-time logistics supported by global partners. Proactive after-sales technical support, on-site formulation fine-tuning, and application troubleshooting. Request a Custom Starch Ether Quote Typical Application Scenarios: Starch Ether Technical Use Cases 1. Cement-based Tile Adhesive Function: Rheology control, anti-slip, open time extension Formulation: 0.025–0.08% starch ether , 0.2% cellulose ether Certification: EU EN 12004, ISO 13007-1 Advantage: Enhanced workability, fault-free installation of large-format tiles 2. Self-leveling Underlayment Function: Smoothing flow, anti-segregation Recommended Grade: SSH SE-30, 0.04–0.1% dosage Standard: ASTM C1708 (US), ISO 13007 Result: Smoother finish, reduced trowel marks, improved surface strength 3. Premixed Plaster/Skim Coat Function: Workability, spray-ability Key Feature: Enhanced cohesion and spread Compliance: ISO 11127 Result: Higher productivity, better adhesion to substrates 4. Gypsum Board Joint Filler Function: Sag resistance, smoothness Dosage: 0.03–0.07% Standard: ASTM C475/ASTM C1396 Advantage: Excellent anti-shrinkage, no hairline cracks 5. Exterior Insulation Mortar (EIFS/ETICS) Function: Water retention, anti-cracking Key Value: Weather resistance, extended system life Standard: EN 998-1 Benefit: Improved durability and cost performance Quality Commitment & Support Services All starch ether products are tested to ISO 9001:2015 and SGS verification standards. Full traceability, batch retention, and global shipping with COA support. Lead time: Regular 7–14 days ex-works after order confirmation. Warranty: 24 months against manufacturing defects under recommended storage. Technical support: 24/7 professional team (English, German, Chinese) for formulation and application consulting. Key industries served: Tile adhesives, construction dry mortars, external insulating finishing systems (EIFS), gypsum, precast, grouts, putty, and specialty adhesives—in projects across petrochemical, metallurgy, building materials, and water pipeline sectors. FAQs: Professional FAQ on Starch Ether 1. What is the raw material base and why is it important? Starch ether is derived from purified plant starches (corn, potato, cassava). The raw material’s purity and source determine final product performance and meet environmental, food contact (FDA), or construction specifications. 2. What are typical mesh sizes & why does it matter? Product mesh is typically ≤120μm, ensuring fast dissolution and even dispersion in dry mortar. Finer mesh achieves optimal workability and eliminates streaking. 3. What is the recommended starch ether dosage? Usually between 0.03–0.1% of total mortar dry mass, depending on application. Higher dosage may be needed for enhanced anti-slip or flow properties. 4. What international certifications should I look for? Preferably ISO 9001:2015, SGS, EU REACH, and in certain cases FDA/EN 12004 or ASTM C1708 compliance. 5. How is shelf life validated? Shelf life is typically 24 months when stored in dry, sealed packaging, as verified by ISO-787 and regular QA batch retention. 6. How does starch ether interact with cellulose ether? Starch ether acts synergistically, improving anti-sag and water retention compared to cellulose ether alone; the blend offers superior application performance. 7. Can you provide third-party test data? Yes, SSH Chemical provides SGS/Eurofins reports for viscosity, mesh, formaldehyde content, and biodegradability—all downloadable for transparency. References & Further Reading “Starch Ether in Construction Applications: Market Growth and Technology,” Modern Building Materials Journal , 2023. ( ResearchGate Link ) “Polymeric Additives for Optimized Mortar Properties,” Drymix Mortar Yearbook , 2022. ( Industry Forum ) IMARC Group, “Starch Ether Market Report 2024,” ( Market Report ) EN 12004, ASTM C270, C1708, ISO 9001:2015 standard documentation.
Hydroxypropyl Methylcellulose, commonly referred to as HPMC, is a multi-faceted cellulose-based polymer that’s extensively utilized across a multitude of industries. When speaking specifically about HPMC K4M, it references a grade of HPMC that appears prominently in several sectors, notably pharmaceuticals, food, construction, and cosmetics. The “K4M” designation speaks to the viscosity measurement—it is an integral feature that defines its application capabilities and functional advantages. Within pharmaceuticals, HPMC K4M stands as a pillar due to its controlled release capabilities, making it indispensable in formulating sustained-release drugs. As a viscosity agent, it retards the dissolution rate of drugs, offering a way to manage dosage releases over extended periods. Experience within this realm underscores its stability and efficiency. Researchers and formulators appreciate HPMC K4M's ability to maintain stable drug release profiles, even under extreme environmental conditions, thus qualifying it as a reliable excipient. Its inherent degree of consistency in pharmaceutical applications ensures patients benefit from trusted medication performance, marrying both expertise and trustworthiness in pharmaceutical engineering. In the construction industry, HPMC K4M serves as an essential additive for tile adhesives and plaster. Its expertise is demonstrated through its abilities as a thickening agent; it imparts crucial water retention and workability to cement mixes. Construction professionals frequently cite HPMC K4M's influence on consistency during application, ensuring even distribution of materials with reduced risk of cracking or shrinkage. This attribute reflects the authoritativeness of HPMC K4M in construction, triangulated by decades of field application that underline how fundamental it is for creating robust, durable surfaces. The food industry leverages HPMC K4M for its stabilizing and emulsifying properties . It offers culinary solutions, particularly in maintaining the integrity of sauces, dressings, and toppings. As a food additive, it provides a sense of trust for manufacturers aiming to achieve specific textures or moisture levels without compromising on quality or safety. Expertise in food science continually validates HPMC K4M due to its non-toxic, non-allergenic nature, effectively demonstrating its aptitude in satisfying industry standards related to consumer health and safety. hpmc k4m full form In cosmetology, HPMC K4M's role as a thickening, emulsifying, and stabilizing agent cannot be overemphasized. Cosmetic formulations reliant on moisturizing solutions frequently include HPMC K4M for its consistent performance in product stability and texture, enhancing user experience. This agent's inclusion transforms ordinary skincare items into luxurious applications with consistent texture and spreadability, fostering consumer trust through reliable product performance. Thus, with an established reputation throughout various industries, HPMC K4M's contributions are multi-dimensional—ranging from the pharmaceutical sector's demand for precision and control to construction's need for material stability, the culinary arts' quest for consistent quality, and the cosmetic industry's innovation for texture and feel. It is precisely its adaptability and proven reliability that affirm HPMC K4M's position as a product derived from decades of expertise and experience. The momentous role of HPMC K4M as an industry staple underscores not just its versatility, but also its foundational reliability meticulously crafted through precise scientific engineering and comprehensive application studies. Informed stakeholders consistently rely on this particular grade of HPMC, evidenced by its longstanding integration into myriad applications where tensile reliability and performance trust are not merely advantageous, but essential. In crafting solutions where longevity, efficiency, and safety intersect, HPMC K4M emerges as a pivotal component deservedly respected across sectors. Each instance of its application points toward an undeniable synergy between innovative material science and practical industry demands, cementing its perpetuity as both a modern marvel and a future-oriented choice in material augmentation.
200000 Viscosities
Excellent product
We can produce pure products up to 200,000 viscosities
40000 tons
High yield
We don’t stop production all year round, and the annual output can reach 40,000 tons
24 hours
Quality service
We provide 24-hours online reception service, welcome to consult at any time
———— Inquiry Form
Schedule A services
Oct . 25, 2025
Oct . 25, 2025
Oct . 25, 2025